回転加振と回転応答計測を利用した部分構造合成法の精度向上

Improvement of Building Block Approach Accuracy by use of Rotation Excitation and Rotation Detection

精密工学専攻 47 号 松岡 優 Matsuoka Suguru

1.緒言

計算(実験)の分業化,実験と計算の一体化など様々な利点 からUnit毎の伝達関数を合成しSystemにおける伝達関数を 予測する部分構造合成法がしばしば用いられる^[1,2,3].しかし, 実験データに対し当手法を適用する場合,実験機材の関係で 並進方向のデータしか取得出来ないため,結合点からのモー メントに寄与が高いローカルモードを見逃す,結合部の回転 方向の連続性を考慮できないなどの制限がかかり予測精度 が低下してしまう問題がある.そのため結合点の回転自由度 が重要になる.回転応答,モーメントの計測法としては T-blockを用いた方法^[4]や二つの三軸加速度計を用いた方法 など様々な方法が考えられてきた.

本研究ではT-blockを用いた方法で多数の並進方向加振に より回転方向の伝達関数を推定し、部分構造合成法の精度向 上を図る.しかしその過程で取得しなければならない並進方 向の伝達関数の数が過大になってしまう.そこでSystemにお いてシステム伝達率法を用いて各結合点の回転応答を考慮 して,注目しているローカルモードをターゲットとする事で, 各結合点からのモーメントの寄与を求める事が出来る.求め た特定の結合点の回転自由度だけを部分構造合成法に含め て計算する事である程度の予測精度を保ちながら部分構造 合成法を実行できる手法を提案する.

2. 部分構造合成法の問題点

本章では図1に示す解析モデルを用いて Unit 単位で結合 点からのモーメントに寄与が高いロールモードの見逃しに ついての検証,ローカルモードを見逃して Unit1 および Unit2 単体の伝達関数から System の伝達関数を予測する部 分構造合成法を行った場合の予測精度を検証する.

Fig. 1 Analysis model(System)

2.1 結合点からのモーメントに寄与が高いローカルモード の見逃しについての検証

本節の目的としては Subcomponent のみが Z 方向および X 軸回転で大きく振動するローカルモードが結合点からのモ ーメントに寄与が高い時,並進加振ではそのモードが十分に 励起できない事を確認する. Unit1 には Subcomponent が四つ のバネで結合されており. また Unit1 の各結合点を加振点 に, Subcomponent 上に応答点に設定する.

結合点1をFz加振,Mx加振した時の応答点との伝達関数と 結合点1の自己応答関数の比較を図2に示す.結合点1の自 己応答関数とFz加振では十分に励起されずMx加振で大きく 励起されているピークが結合点からのモーメントに寄与が 高いローカルモードとなる.図2中のグラフでは477.9Hzの ピークがその特徴に該当している.またそのピークにおける ローカルモードを図3に示す.モードシェイプの特徴として はX軸まわりに捻じれるモードとなっている.また本節には 代表として結合点1の例しか載せていないが他の結合点に関 しても同様の傾向を示している.

Driving(Conn.1)

Fig. 3 Local mode shape(477.9Hz)

2.2 結合点の自由度選択による部分構造合成法の予測精度 の検証

本節の目的としてはローカルモードを見逃した状態,つま り並進方向のみの Unit 単体の伝達関数を用いて周波数毎の 伝達関数による部分構造合成法を行った場合,予測精度がど の程度低下するのか,また結合点で考慮する自由度を変更す る事で振動予測の精度がどの程度変化するのかを検証する. 比較する伝達関数は図1に示す Systemにおける加振点-応答 点である.また Unit1 と Unit2 は4 点で並進3 方向,回転3 軸 まわりのバネにより結合している.

図4に結合点の全ての自由度を考慮して合成した際の加振 点-応答点間のSystemの伝達関数と結合点の並進自由度のみ を考慮して合成した伝達関数,結合点の並進自由度とX軸ま わりのモーメントを含めて合成した伝達関数の比較を示す.

図4に示すように並進自由度のみを用いて合成した場合, ねじりのローカルモード付近において振幅に差が出ている のが確認出来る.これは各結合点からの並進力ではねじりの ローカルモードが十分に励起できていないため,並進方向の 伝達関数を用いて合成しても十分に表現できないためだと 考えられる.また,各結合点の並進自由度に結合点1のMx自 由度を含めて合成した伝達関数が全自由度で合成した伝達 関数とほとんどの周波数において一致しているのが分かる. これは結合点1のMx方向のモーメントがねじりのローカル モードに最も寄与が高いため,合成後も十分に表現できたと 考えられる.したがって各結合点において全ての自由度を含 めずとも,より寄与が高い結合点のモーメントを含める事で ある程度の予測精度を確保することが出来る.

Fig. 4 System_FRFby BBA(Input-Output)

3. システム伝達率法を用いたねじりのロー カルモードに対するモーメントの寄与が高い 結合点の選定

前章では結合点における回転自由度の重要性を示した.し かし1章で述べたように,実験において回転加振を考慮する 場合過大な並進方向の伝達関数が必要になってしまう.そこ で図1に示す System において Target を応答点,更に各結合 点の回転を経路に含めたシステム伝達率法を行う事でねじ りのローカルモードに対するモーメントの寄与が最も高い 結合点を明らかにし,その結合点の回転自由度のみを加えて 合成する事でねじりのローカルモードに対する予測精度を ある程度保ちながら,必要な並進方向の伝達関数と加振数の 低減を図る. 式(1)に回転項を含めたシステム伝達率法の式を示す.

$$\begin{bmatrix} \frac{Z_t}{\ddot{\theta}_1} \\ \vdots \\ \frac{Z_t}{\ddot{\theta}_n} \end{bmatrix} = \begin{bmatrix} \frac{\theta_1}{\ddot{\theta}_1} & \cdots & \frac{\theta_n}{\ddot{\theta}_1} \\ \vdots & \ddots & \vdots \\ \frac{\ddot{\theta}_1}{\ddot{\theta}_n} & \cdots & \frac{\ddot{\theta}_n}{\dot{\theta}_n} \end{bmatrix} \begin{bmatrix} T_1 \\ \vdots \\ T_n \end{bmatrix}$$
(1)

 Z_t [m/s²]は Target 点での応答, θ_n [rad/s²]は結合点 n での 回転応答, T_n [m]が Target の応答に対する結合点 n の伝達率 を表している. 更にこの伝達率 T_n に, 対応する結合点の回転 応答 θ_n をかけた値が寄与度[m/s²]となる. なお本章ではモ ーメントに寄与が高いローカルモードを対象にしているた め, θ_x 方向以外の経路は考慮していない.

式(1)を用いて求めたねじりのローカルモードに対する各 結合点のモーメントの寄与度を図 5 に示す. グラフから読み 取れるように結合点 1 の M_x 自由度が最も寄与度が高い. 続い て結合部 2, 結合部 3 と 4 が概ね同じ寄与度を示している. ま た図 4 においても結合点 1 の θ_x 自由度を含めて合成した際の ねじりのローカルモードにおける振幅が最も高い. 続いて結 合点 3 の θ_x , 結合点 4 の θ_x を含めた合成が概ね一致しており, 最も振幅が小さいのが結合点 2 の θ_x を含めた合成である. 結 合点 2 の寄与度の順序だけ異なっているが,寄与度と振幅の 傾向はほとんど一致している. したがってこの手法を用いる 事でねじりのローカルモードに対する各結合点のモーメン トの寄与度の大小関係を判別することが出来る.

Fig. 5 Contribution from each connection

4. T-block を用いた回転加振, 応答の計測

本章では図7に示す T-block を用いて,実験的に回転加振 と回転応答を計測する理論を述べる.しかし,この理論,検証 については既に他の論文で述べられているため詳しいこと は割愛する.測定を行う手順を以下に示す.

回転伝達関数を計測したい点に T-block を剛に設置 し、T-block に六点以上の加速度センサーを取り付ける. さら にT-block に対して六点以上の加振力を与える事で理論上計 算が可能である. 式(2), 式(3)を用いて T-block の設置位置 i における内力と応答を推定する.

$$U_i = [T_i]^T [R]^+ V^{(l)}$$
(2)

$$F_{i} = -[T_{i}]^{-1}[[I_{M}][R]^{+}V - [T_{l}]F_{hammer}]$$
(3)

 U_i は T-block の結合点での応答, Rは変位変換行列, Vは T-block から計測された応答ベクトル, I_M は T-block の質量, 慣性モーメント行列, T_i , T_i は力変換行列, F_i は結合点の内 カベクトル, F_{hammer} は実際に T-block に与えた加振ベクト ル, 右肩の 1 は加振位置を表している.式(2),式(3)より求め たT-block の結合点における内力, 応答を用いて式(4)より回 転伝達関数を含んだ全ての自由度の伝達関数 H_{ii} (6×6)を得 ることが出来る.

$$[H_{ii}] = [U_i][F_i]^{-1} \tag{4}$$

また, 次章の実験でT-blockを用いるが, その際の加振方向, 加振回数, 応答点を図7に示している. このように回転応答は 三軸加速度計を四つ程取り付ける事により容易に求められ るが, 回転加振については多数の並進加振を正確に複数回行 う必要があり, 実用上出来るだけ少ない回転加振で部分構造 合成法の精度を向上したい.

•:3 axis acceleration sensor Fig. 7 T-block input(left) and output(right)

5. 簡略化した実際の検証

本章ではプリンターを用いて本手法の検証を行う.実験対 象の簡略図を図8に示す.

Fig. 8 experiment of printer system

5.1 結合点からのモーメントに寄与が高いローカルモード の見逃し

本節では解析と同様に結合点のモーメントに寄与が高い ローカルモードの見逃しの検証を行う.結合点1をFz加 振,Mx加振した時の応答点との伝達関数と結合点1の自己応 答関数の比較を図9に示す.結合点1の自己応答関数でおよ びFz加振では十分に励起されずMx加振で大きく励起されて いるピークが結合点からのモーメントに寄与が高いローカ ルモードとなる.図9中のグラフでは469.3Hzのピークがそ の特徴に該当している.

5.2 Z 軸方向のみの伝達関数を用いた部分構造合成法

本章では Z 方向のみの伝達関数を用いて部分構造合成法を 行った際の予測精度を検証する.比較するグラフは図8に示 す System における Input-Output 間の伝達関数である.図10 に System の状態で実験を行い、取得した Input-Output 間の 伝達関数とZ軸方向のみデータを用いて部分構造合成法行い 算出した Input-Output 間の伝達関数の比較を示す.また 470Hz 付近にモーメントの寄与が高いローカルモードが存在 するため 400Hz から 500Hz を拡大している. グラフから問題 となっているローカルモード付近の振幅が大きく異なって いる事が分かる.これは解析と同様に各結合点からの並進力 (Fz)ではローカルモードが十分に励起できていないため、Z 方向の伝達関数を用いて合成しても十分に表現できないた めだと考えられる.また図 11 に Subcomponent のモードシェ イプを示す. (a) が実測した正解値から算出したモードシェ イプ,(b)が部分構造合成法から算出したモードシェイプに なる.この二つのモードシェイプの違いとして,振幅の大き さが挙げられる.応答点をSubcomponent上に設定してあるた めローカルモードの振幅はグローバルモードよりも大きく なる.(a)のモードシェイプの振幅は(b)よりも大きいため後 者はローカルモードでは無いと考えられる.また二つ目の違 いとして, (a)のモードシェイプはX軸まわりにねじれる形と なっているが(b)は一次曲げの形をしている.したがって2方 向のみの伝達関数を用いて合成した場合,伝達関数の振幅, モードシェイプ共に異なる事が確認できた.

Fig. 10 Comparison of system_FRF by BBA(Input-Output)

Fig. 11 Local mode shape

5.3 モーメントの寄与が最も高い結合点の回転自由度を含 めた部分構造合成法

本節では3章で示した回転経路を含んだシステム伝達率法 を用いて問題となっているねじりのローカルモードに対す るか結合点からのモーメントの寄与を算出し、最も寄与の高 い結合点の回転自由度を含めて部分構造合成法を行う事で 予測精度の向上を図る.図12に各結合点のモーメントの寄与 度を示す.実験では Mx に加えて My も含めている.図 12 より 結合点4のMx方向のモーメントの寄与が最も高い事が分か る.したがって結合点4のX軸まわりの自由度を含めて合成 する.図13に正解値と結合点全ての自由度を含めて合成した 伝達関数,各結合点の並進自由度と結合点4のX軸まわりの 自由度を含めて合成した伝達関数の比較を示す.ほとんどの 周波数においてZのみの伝達関数を用いて合成した伝達関数 よりも精度が上がっているのが確認できる.また,ローカル モードのモードシェイプを図14に示す. ローカルモードにお いても図 10 に示す正解値と形状がおおよそ一致しているの が確認できる.

6. 研究成果

- (1) ローカルモードの結合点のモーメントからの寄与が高い時,部分構造合成法において並進加振のみのデータの場合見逃す事を確認した.
- (2) ローカルモードを見逃した状態(並進方向のデータのみ) で合成を行うとローカルモード付近で予測精度が下がる 事を確認した.
- (3) システム伝達率法を用いて各結合点の回転経路を含めて 計算することで問題となるローカルモードに対する各結 合点のモーメントの寄与を求めた。
- (4) モーメントの寄与が最も高い結合点の回転自由度のみを 含めて合成を行う事で,ある程度の予測精度を保ちながら 部分構造合成法を実行できた

参考文献

- (1) 大久保信行, "機械のモーダル・アナリシス", 中央大学 出版部, (1982)
- (2) 長松昭男, "モード解析入門", コロナ社, (1993)
- (3) 長松昭男, 大熊政明, "部分構造合成法", 培風館, (1991)
- (4) 細矢直基 他 "構造物の回転自由度に関する周波数応 答関数の推定(自己 FRF 推定法の提案と基礎的検討)", 機論,67-657,C(2001),1470-1477.
- (5) 大久保信行, "伝達経路解析の基礎から応用", エルエム エスジャパン株式会社, (2012)