聴覚および視覚刺激を考慮した EV 車室内のマスキングに基づく純音認知評価 Pure Tone Cognition Evaluation Based on Sound Masking in EV Interior in Consideration of Auditory and Visual Stimuli

1. はじめに

カーボンニュートラルの一環として内燃機関車に代わり, 電気自動車(以下, EV)が普及し始めている.内燃機関車と EVを比較すると,パワートレインがエンジンからモータに変 化したことが大きな違いとして挙げられる.パワートレイン がモータに変化することによる副次的な利点として,これま で車室内で支配的であったエンジンノイズが消失すること による車室内の静音化⁽¹⁾が挙げられる.一方,欠点として, 静音環境が整ったことにより,相対的に音への感度が上がっ たことや,新たなノイズとしてモータやインバータ,ギア等 のノイズが不快感を与える原因になることが挙げられる.こ のような不快感に対する対策が,今後のEVの課題となる.

本研究では、ノイズが与える不快感への対策として、マス キング理論⁽²⁾に基づき EV 車室内暗騒音を用いてノイズをマ スキングし、ノイズの認知を低下させる方向性を提案する. しかし、マスキング理論は認知を阻害するためのマスカーに 周波数特性が平坦なホワイトノイズを用いており、聴覚のみ の単刺激で測定を行っている. EV 車室内では、マスカーとな る EV 車室内暗騒音は平坦ではない.更に、聴覚だけでなく 視覚等の感覚刺激も考慮しなければならない.そのため、マ スキング理論を EV 車室内にそのまま適用することはできな い.そこで、初めに周波数特性が平坦でないマスカーを用い て可聴突出量を測定した.次に、視覚刺激を提示した場合の 可聴突出量を測定した.なお、本研究のすべての評価は、実験 参加者に対し十分なインフォームド・コンセントを得て実施 している.

マスカーの周波数特性が平坦でない場合の可聴突出量測定⁽³⁾

本章では, EV 車室内を想定し, 臨界帯域外の音圧を一律で 右下がりに変化させた場合の可聴突出量を測定する.

2.1 実験音源

マスカーの概念図を Fig. 1 の黒線で示す. EV 車室内暗騒 音を想定し,低周波数が増加,高周波数が低下する音源を作 成した. 30 dB の広帯域雑音を基準とし,低周波側(LF)の変 化量を 0 dB, +10 dB, +20 dB,高周波側(HF)の変化量を 0 dB, -10 dB, -20 dB とした.変化量が LF+10 dB かつ HF0 dB の音源は, +10/0(LF dB/HF dB)と表記する.

2.2 実験条件

音源提示機器にはヘッドホンを使用し,正確な音源提示の ためにFig. 2に示すプロセスでヘッドホンの周波数特性を 補正⁽⁴⁾している.Fig. 2(a)に示す再生音源はヘッドホン特 性により,Fig. 2(b)に示す波形として出力される.そこで, Fig. 2(c)に示す逆特性を掛けることにより,再生時のヘッ ドホンの特性が打ち消され,Fig. 2(d)に示す周波数特性が 平坦の波形が出力される.なお,本補正は以降の全ての実験 精密工学専攻 19 号 金澤 立哉 Tatsuya kanazawa

において行っている.

実験時は、マスキーとマスカーを同時に提示し、実験参加 者の「マスキーが聞こえる-聞こえない」の評価により、可聴 突出量を決定する.マスキーの音圧レベルは2 dB刻みで変 化し、実験参加者にマスキーの音圧レベルの推移が予測され ないように留意した.

認知評価はマスキーの音圧レベルごとに 10 秒行い, 10 秒 間の音源提示の後にマスキーの音圧レベルを変化させ再度 提示する.実験参加者にはマスキーが聞こえている間,手元 にあるボタンを押すように指示した.実験中は,マスカーを 絶えず提示し,適当なタイミングでマスキーを提示する方法 を用いる.これは,実験の初めにマスキーのみを提示するが, 実験参加者の耳に残ることで,聞こえていないにもかかわら ず「聞こえる」と誤評価されるのを防ぐためである.

実験参加者は正常な聴力を有し、純音認知の感覚が類似した20代4名とした.

2.3 結果と考察

Fig. 3に実験結果を示す. 横軸に各音源を, 縦軸に実験参

Frequency Hz

Fig. 1 Uniform change in SPL outside the critical bandwidth

Fig. 3 Result of change for all bands below and above the critical bandwidth

加者4名の可聴突出量の平均値を表す.可聴突出量はFig.1 のように、マスキーの認知音圧レベルとマスカーの同一周波 数での音圧レベルの差分と定義する.例えば、1000 Hzのマ スキーが50 dBで認知できたとき、マスカーは30 dBのた め、可聴突出量は20 dBとなる.マスキー1000 Hzと8000 Hz の可聴突出量を比較すると、マスキング理論と同様に、高周 波数の8000 Hzが増加することが確認された.

また,臨界帯域内よりも低い周波数帯の音圧を増加させる と、可聴突出量が理論値よりも増加することが確認された. 更に、マスカーの音圧レベルが増加すると、可聴突出量も増 加する.これは、マスキングカーブ⁽⁶⁾が影響していると考え られる.マスキングカーブとは、あるマスカーがマスキング するラインを描いたものである.Fig. 4は1000 Hzのマス キーに対する+20/-20に対してマスキングカーブを適用して いる.例えば、臨界帯域の雑音のみが提示された場合のマス キングラインが中央の破線であり、マスキーは中央の破線の 音圧レベルで初めて認知される.

マスカーの音圧レベルを増加させた周波数帯のマスキン グカーブ(左)の裾野に着目すると、臨界帯域のマスキングカ ーブ(中央)より高いことがわかる.この2本のマスキング カーブと組み合わさることで、新たな付加マスキングが作用 し、可聴突出量の増加に繋がったと考えられる.

一方,臨界帯域よりも高い周波数帯の音圧レベルを減少さ せても,突出量閾値に変化は見られなかった.音圧レベルが 低下すると,マスキングカーブ(右)が小さくなり,マスキー の周波数に影響する大きさではないため,変化が表れないと 考えられる.

単刺激時における音源集中度ごとの可聴 突出量測定⁶⁰

刺激を聴覚のみの単刺激とし、単刺激内において提示音源 への集中度を変化させ、可聴突出量を測定する.

Fig. 6 Audible level of protrusion quantity for each concentration in single stimulus

3.1 実験音源

マスキーとして 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz の 6 種類の定常純音を用いる.マスカーには, Fig. 5 に示す 60 km/h における EV 車室内暗騒音を模擬した 広帯域雑音を使用する.

3.2 実験条件

音源の評価方法は2章と同様である.また,可聴突出量は 閉眼条件と開眼条件で測定する.これは,音楽を聴く等の音 に集中する際は目を閉じることがあり,目の開閉による音源 聴取への集中度の変化が可聴突出量に与える影響を把握す るためである.

実験参加者は正常な聴力を有した20代6名である.

3.3 結果と考察

Fig. 6に実験結果を示す. 横軸に周波数を, 縦軸に可聴突 出量を示す.

実験後に,開眼閉眼による音源聴取に対する集中度変化の 有無に関し,開眼状態では集中度が低下するコメントが得ら れた.よって,目の開閉による音源聴取への集中度が主観的 に変化していることを確認した.

しかし, Fig. 6より複数の周波数において音源聴取状態の 違いによる閾値の増加は見られない.また,各実験参加者に おいて変化量は小さく,開眼が閉眼を上回る箇所やその逆の 箇所もある.これは,評価におけるばらつきの範囲内での変 化であると考えられる.

以上より,閉眼開眼による音源聴取への集中度の変化は主 観的かつ小さく,聴覚閾値に与える影響は,無視できると考 えられる.

視覚刺激による負荷⁽⁶⁾

視覚刺激を用いたタスクを基に、実験参加者による主観と 客観評価を行い、ストレスに影響する要因を解明する.

Fig. 7 The condition of the experiment

Fig. 8 An example of a presentation video

4.1 視覚タスクに関して

実験状況を Fig. 7,使用する視覚タスクの概要を Fig. 8 に示す.実験参加者には2種類のタスクを行うよう指示した.

1 種類目は,道路脇に設置された標識をカウントするタス クであり,標識は 50 km/h 制限と 30 km/h 制限の 2 パターン がある.実験参加者は 30 km/h 制限の標識を数え,動画視聴 後にその数を回答する.

2種類目は、対向車をカウントするタスクであり、対向車 はヘッドライト 0N/0FF の2パターンがある.実験参加者は 0Nを数え、動画視聴後にその数を回答する.

映像の条件は,他車が走行していない無混雑条件と他車が 走行している高混雑条件の2条件である.無混雑条件では対 向車が存在しないため,標識のみをカウントさせた.

実験参加者は Fig. 5 に示す広帯域雑音と Fig. 8 のような 直線道路を走行している約 17 秒の映像を提示し,タスクの 回答をする.これを1セットとし,計10セット実施する. また,視覚タスクとの比較として,音だけを提示している単 刺激の条件でも実験を行う.

実験参加者は正常な聴力と,運転免許の取得に必要な視力 を有する20代6名である.

4.2 視覚負荷の主観評価手法

視覚負荷の主観評価には, 主観的作業負荷評価尺度である NASA-TLX⁽⁷⁾を用いる. タスク終了後に知的・知覚的要求 (MD), 身体的要求 (PD), タイムプレッシャー (TD), 作業成績 (OP), 努力 (EF), フラストレーション (FR) の6項目に関して評価 させる.

4.3 視覚負荷の客観評価手法

視覚負荷の客観評価には、心電計測よりローレンツプロット⁽⁸⁾(以下,LP)の面積を用いる.LPは横軸にn番目の心電 RR間隔,縦軸にn+1番目の心電 RR間隔をプロットした図を 指す.一般的に、安静状態になるほど面積が大きくなり、ス トレス・緊張状態になるほど面積は小さくなる.

生体情報の解析結果は、個人ごとの変動に差があるため、 実験参加者ごとに平均と標準偏差を求め、平均0、分散1の 標準化を行い「リラックス度指数」として扱う.本指数は値

が大きいほどリラックスしており,小さいほどストレスを感 じていることを表す.

4.4 結果と考察

4.4.1 NASA-TLX

NASA-TLX による実験参加者の各評価の平均値を Fig. 9 に 示す.6項目すべてにおいて、単刺激、無混雑条件、高混雑 条件の順に負荷が大きいと感じている.

視覚タスク提示時は、多くの評価項目において単刺激と有 意水準 5%未満で有意差が見られたが、無混雑条件の OP, FR のみ有意差が見られなかった。単刺激は、音のみの提示であ り、何もしないことがストレスに繋がり FR の評価値が他の 評価項目に比べて増加すると考えられる.また、ストレスが 増加することで、タスクに対する集中力が削がれ OP が増加 すると考えられる.

4.4.2 ローレンツプロット

LP による心電解析結果を Fig. 10 に示す. 横軸が各条件, 縦軸が実験参加者のリラックス度指数の平均値を表している. リラックス度指数は, 主観的な負荷が大きい高混雑条件 で最も低下し, ストレスを感じていることがわかる. 視覚刺激におけるカウントタスクでは、カウントする量の 増加で難易度が上昇し、ストレスに繋がると考えられる.

4.4.3 主観と客観の対応

各実験参加者の NASA-TLX の 6 項目における各評価値とLP によるリラックス度指数の相関係数(R)を求め,ストレスと 深い関係のある評価項目を選定する.相関が高い項目(|R| >0.7)として,MD,TD,EFの3項目が得られた.Fig.7は, 最も相関の高い散布図であり,横軸のTDの増加に伴い,縦 軸のリラックス度指数が低下している.その他の2項目に関 しても同様に,主観的な負荷の増加によりストレスも増加す る傾向が得られた.

以上より,記憶に関する視覚タスクを提示する際は,記憶 対象の提示頻度により時間的圧迫感や知的な作業の負荷が 増加しストレスに繋がる.よって,記憶対象の提示頻度によ り,実験参加者のストレスが変化し,視覚負荷を効果的に変 化させられると考えられる.

刺激を聴覚と視覚の複合2刺激とし、複合2刺激内でタス ク負荷を変化させ、可聴突出量を測定する.また、単刺激と 比較することで視覚負荷の影響を把握する.

5.1 視覚タスクに関して

実験条件は4章と同様である.使用動画は、それぞれの混 雑度で、記憶対象の提示頻度は統一し、回答数を変化させた 10パターンを作成する.動画を順番に提示することで、実験 参加者にタスクの内容を記憶されないようにした.

5.2 実験条件

実験は約17秒の動画の視聴とタスク、マスキーの認知に 対する回答を1セットとして行う.動画の始まりと終わりは、 動画への没入度が低いと仮定し、音源は動画の前後4秒程度 以外で提示する.セット終了後、マスキーの認知に対する回 答を基にマスキー音圧レベルを変化させ、次のセットに移る.

本章では、視覚タスクによる負荷が大きく、マスキーが聞 こえている際にボタンを押す動作が難しいため、2章とは評 価方法を変更している.その際、マスキーが耳に残ることに よる誤評価を防ぐため、実験前はマスキーを提示せず、マス カーのみを提示した後に評価を行う.そのため、「初めに提示 したマスカーと比較してマスキーが含まれている」と感じた 場合に「聞こえる」と定義する.

5.3 結果と考察

Fig. 12に単刺激と複合2刺激をまとめた実験結果を示す. 横軸に周波数を,縦軸に可聴突出量を示す.複合2刺激において,無混雑条件(■),高混雑条件(◆)の可聴突出量に着目 すると,高混雑条件では無混雑条件から大きく増加すること が確認された.

複合2刺激の高混雑条件では、単刺激の開眼条件から可聴 突出量が平均6 dB 程度増加することが確認された.また、 無混雑条件では開眼条件からの単刺激と比較して、可聴突出 量の増加が小さいことが確認された.全体的に、視覚刺激の 負荷増加に応じて突出量閾値も増加する傾向が見られる.

人の情報処理容量には上限があり⁽⁹⁾,情報過多になること で情報が切り捨てられる.本実験では実験参加者に視覚タス クを課しているため,情報過多の場合,聴覚刺激の情報が切 り捨てられると考えられる.高混雑条件では,標識のカウン トに加え絶え間なく対向車が迫るため,視覚の処理領域が連 続的に優勢である.一方,無混雑条件では対向車が存在しな い.この標識間において聴覚の処理領域が一時的に優勢にな る.これらの聴覚の処理領域の変化が,開眼条件からの可聴 突出量の変化に影響していると考えられる.

Fig. 12 Comparison of audible level of protrusion quantity for single and compound stimuli

6. 研究成果

- (1) 臨界帯域内と臨界帯域外に音圧レベル差があり、周波 数特性が平坦でない場合、臨界帯域内よりも音圧レベ ルが大きい周波数帯がマスキングに影響するといえる.
- (2) 記憶を要する視覚タスクでは、記憶対象の提示頻度により時間的な圧迫感や知覚的な負荷を感じ、ストレス上昇による視覚負荷の効果的な変化を確認した。
- (3) 複合 2 刺激において,混雑度変化による可聴突出量の 変化を確認した.これは,記憶対象の提示頻度の増加に よる視覚負荷の増加が原因である.
- (4) 単刺激と複合 2 刺激の比較より,他感覚の刺激提示が マスキングに影響することを確認した.また,他感覚刺 激による影響は周波数に依存しない可能性を見出した.

謝辞

本研究は 2021 年度,2022 年度の自動車用動力伝達技術研 究組合 (TRAMI)の委託/共同研究により実施したものである.

参考文献

- 宮川隆行,榎本俊夫,小宮洋志,初田匡之,谷本勉,解 析を用いた EV 用モータの振動発生メカニズム解明及び 低減検討例,自動車技術会論文集,45-1 (2013) pp. 109-113.
- (2) Fastl, H. and Zwicker, E., PSYCHO-ACOUSTICS, Springer (2006) pp. 61-66.
- (3) 金澤立哉,柴橋和真,田辺総一郎,戸井武司,臨界帯域 内外暗騒音を考慮した EV 車室内の純音認知評価,自動 車技術会学術講演会予稿集(2022)No. 20225355, pp. 1-6.
- (4) 金澤立哉,柴橋和真,田辺総一郎,戸井武司,臨界帯域 内外の広帯域雑音を用いた純音認知評価,日本音響学 会講演論文集(春)(2022)pp. 671-672.
- (5) 吉田登美男, 亀田和夫, 聴覚と音声, コロナ社 (1980) pp. 115-118.
- (6) 金澤立哉,柴橋和真,金堂雅彦,戸井武司,視覚刺激を 考慮した EV 車室内の周波数マスキングによる純音認知 評価,日本音響学会講演論文集(春)(2023)3-11-2.
- (7) 芳賀繁,水上直樹,日本語版 NASA-TLX によるメンタル ワークロード測定,日本人間工学会誌, 32-2 (1996) pp. 71-79.
- (8) 豊福史,山口和彦,萩原啓,心電図 RR 間隔のローレン ツプロットによる副交感神経活動の簡易推定法の開発, 日本人間工学会誌,**43**-3 (2007) pp. 185-192.
- (9) 安川展之,小竹元基,鎌田実,自動車運転時におけるドライバの情報処理容量の検討,交通・物流部門大会講演論文集,52-6(2006)pp.293-296.